

Structure and Recognition in the BARS/CtBP-dependent Transcription Regulation

Martino Bolognesi, Marco Nardini, *Department of Biomolecular Sciences and Biotechnology and INFM, University of Milano, Milano, Italy.* E-mail: martino.bolognesi@unimi.it

BARS/CtBP3 is a dual function protein acting as acyl-transferase in the Golgi apparatus (supporting membrane reshaping and vesicle traffic) [1], and as transcription co-repressor, in the nucleus, through the interaction with several enzymatic partners (e.g. histone deacetylases, HDACs). BARS/CtBP3 is based on a 3-domain structure, hosting a classical dehydrogenase fold [2]. Regulation of the two activities is achieved through competitive binding of NAD(H)/acyl-CoA, association equilibria, SUMOylation, and eventually through recognition of specific sequence motifs in the interacting partners. Binding of specific transcription factors to each subunit in the dimeric BARS/CtBP3, through a PXDLS sequence motif, is considered one of the basic mechanisms to recruit HDACs, and modify the chromatin structure, with ensuing transcription repression [2]. Structural considerations and mutant analyses indicate that different recognition sites are present on BARS/CtBP3 surface, in keeping with its pivotal role within a nuclear protein complex hosting more than twenty different proteins.

[1] Weigert R., Silletta M.G., Spanò S., Turacchio G., Cericola C., Colanzi A., Senatore S., Mancini R., Polishchuk E.V., Salmona M., Facchiano F., Burger K.N.J., Mironov A., Luini A., Corda D., *Nature*, 1999, **402**, 429. [2] Nardini M., Spanò S., Pericola C., Pesce A., Massaro A., Millo E., Luini A., Corda D., Bolognesi M., *EMBO J.*, 2003, **22**, 3122.

Keywords: biomolecular recognition, enzyme function, transcription regulation