Structural Study of Sn-doped In₂O₃

Emilija Tkalcec^a, Biserka Grzeta^b, Christian Goebbert^c, Jasminka Popovic^b, Vadim Ksenofontov^d, Sergey Reiman^d, Claudia Felser^d, ^aFaculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 20, HR-10000 Zagreb. ^bRudjer Boskovic Institute, P.O. Box 180, HR-10002, Zagreb, Croatia. ^cItN Nanovation, D-38820 Halberstadt. ^dJohannes Gutenberg-Universitaet, Staudinger Weg 9, D-55099 Mainz, Germany. E-mail: etkalcec@fkit.hr

Tin doped In₂O₃ (ITO) is widely used in phototronic, optoelectronic and microelectronic devices. There are numerous studies on ITO, but the understanding of its defect structure is rather incomplete. In_2O_3 possesses a cubic structure, the space group Ia³[1]. The structure contains two different six-fold-coordinated cation sites referred as sites B and D, respectively. This paper focuses on X-ray diffraction and ¹¹⁹Sn Moessbauer studies of the polycrystalline ITO samples containing 2-14 at% Sn. Nanocrystalline ITO powders were prepared by a sol-gel technique using InCl₃ and SnCl₄ reagent grade chemicals and annealed at 300°C for 5 h. Lattice parameter a of doped In₂O₃ increased with Sn-doping level up to 8 at% and decreased above. Such behavior of lattice parameter suggests that tin substitution for In³⁺ on sites B and D is non-uniform and depends on tin content. ¹¹⁹Sn Moessbauer spectra indicated that only the Sn⁴⁺ state is present in ITO samples. The least square fitting of spectra was performed by assuming presence of two doublets. In accordance with [2], doublets with isomer shifts (IS) in the range 0.09-0.17 and 0.36-0.464 mms⁻¹, respectively, correspond to the D and B sites in the cation sublattice of the In₂O₃ structure. The area ratio of the two doublets depended on tin content.

[1] Marezio M., Acta Cryst., 1966, **20**, 723. [2] Binczycka H., et al., Phys. Stat. Sol. (B), 2005, in press.

Keywords: Sn-doped In₂O₃, x-ray diffraction, Moessbauer spectroscopy