## Structure of the N-terminal domain of PEX1 AAA-ATPase

Kumiko Shiozawa<sup>a</sup>, Nobuo Maita<sup>a,b</sup>, Kentaro Tomii<sup>c</sup>, Azusa Seto<sup>a</sup>, Natsuko Goda<sup>a</sup>, Yutaka Akiyama<sup>c</sup>, Toshiyuki Shimizu<sup>a</sup>, Masahiro Shirakawa<sup>a</sup>, Hidekazu Hiroaki<sup>a</sup>, <sup>a</sup>Graduate School of Integrated Science, Yokohama City University. <sup>b</sup>Japan Biological Informatics Consortium. <sup>c</sup>Computational Biology Research Center, The National Institute of Advanced Industrial Science and Technology. E-mail: kumiko shiozawa@hotmail.com

Peroxisomes are responsible for several pathways in primary metabolism, including beta-oxidation and lipid biosynthesis. PEX1 and PEX6 are hexameric AAA-type ATPases, both of which are indispensable in targeting over 50 peroxisomal resident proteins from the cytosol to the peroxisomes. Although the tandem AAA-ATPase domains in the central region of PEX1 and PEX6 are highly similar, the N-terminal sequences are unique. To better understand the distinct molecular function of these two proteins, we analyzed the unique Nterminal domain (NTD) of PEX1. Extensive computational analysis revealed weak similarity of PEX1 NTD to the N-terminal domains of other membrane related type II AAA-ATPases, such as VCP / p97 and NSF. We have determined the crystal structure of mouse PEX1 NTD at 2.05 Å resolution, which clearly demonstrated that the domain belongs to the double-psi-barrel fold family found in the other AAA-ATPases. The N-domains of both VCP and NSF are structural neighbors of PEX1 NTD with a 2.7 Å and 2.1 Å r.m.s.d. of backbone atoms, respectively. Our finding suggest that the supra-domain architecture, which is composed of a single N-terminal domain followed by tandem AAA domains, is a common feature of organellar membrane-associating AAA-ATPases. We propose that PEX1 functions as a protein unfoldase in peroxisomal biogenesis, using its N-terminal putative adaptor-binding domain.

[1] Shiozawa K., Maita N., Tomii K., Seto A., Goda N., Akiyama Y., Shimizu T., Shirakawa M., Hiroaki H., *J. Biol. Chem.*, 2004, **279**, 50060. [2] Shiozawa K., Maita N., Tomii K., Seto A., Goda N., Akiyama Y., Shimizu T., Shirakawa M., Hiroaki H., *Acta Crystallogr D Biol Crystallogr*, 2004, **60**, 2098.

Keywords: PEX1, N-terminal domain, AAA-ATPase