
Non Classical vs. Classical Metal \cdots H₃C-C Interactions: A Neutron Diffraction Study of a 14-Electron Ruthenium(II) System

Eberhardt Herdtweck^a, Walter Baratta^b, Sax A. Mason^c, Carlo Mealli^d, ^aDepartment Chemie, Technische Universät München, Germany. ^bDipartimento di Scienze e Tecnologie Chimiche, Università di Udine, Italy. ^cILL, Grenoble, France, ^dICCOM-CNR, Florence, Italy. E-mail: eberhardt.herdtweck@ch.tum.de

A neutron diffraction study establishes the precise nature of the δ agostic interactions in the complex RuCl₂[PPh₂(2,6-Me₂C₆H₃)]₂ (1). By contrast to the classical agostic bonding, it is shown that two ortho-methyl group of the xylyl substituents interact with the

unsaturated metal centre through two C-H bonds each. The result is also substantiated by the NMR data in solution. [1], [2] Reexamination of all the X-ray structures with β , γ , δ and ε M···H₃C-C moieties as well as DFT calculations on models of **1** allow to

conclude that the agostic interactions span the range between the classical $(M \cdots \eta^2 \text{-}HC)$ and the non-classical $(M \cdots \eta^3 \text{-}H_2C)$ types, depending on the number of atoms between the metal and the methyl group.

[1] Baratta W., Mealli C., Herdtweck E., Ienco A., Mason S. A., Rigo P., *J. Am. Chem. Soc.*, 2004, **126**, 5549. [2] Baratta W., Herdtweck E., Rigo P., *Angew. Chem. Int. Ed.*, 1999, **38**, 1629.

Keywords: neutron structure determination, hydrogen bonding of coordination compounds, databases