Magnetic Structure of BaFe₁₂O₁₉ Determined by Resonant X-ray Magnetic Scattering

Satoshi Sasaki^a, Takahiro Aki^a, Syoichi Sakurai^a, Norio Shimizu^a, Koichi Ohkubo^a, Kouji Yamawaki^a, Takayasu Hanashima^b, Takeshi Toyoda^c, Takeharu Mori^d, ^aMaterials and Structures Lab., Tokyo Institute of Technology. ^bPPL, Kusatsu, Shiga. ^cIRII, Kanazawa. ^dPhoton Factory, Tsukuba, Japan. E-mail: sasaki@n.cc.titech.ac.jp

Resonant X-ray magnetic scattering (RXMS) has attracted much interest as a useful tool to determine the magnetic structures associated with specific electronic states such as 3d-4p interactions. The resonant enhancement in the Bragg intensity between charge and magnetic scatterings [1] makes it possible for a tiny single-crystal to give a complete determination of the crystal structure and spin arrangement. M-type BaFe₁₂O₁₉ has been examined in this study, because there are five independent Fe sites in a hexagonal-ferrite structure, which are tetrahedral $4f_1$, bipyramidal 2*b*, and octahedral 2*a*, $4f_2$ and 12*k* sites.

RXMS experiments were performed at the Fe K absorption edge at BL-3A, Photon Factory. Diffraction profiles for more than 30 reflections of a single crystal of 0.07 mm in diameter were measured with right- and left-circularly polarized X-rays, which were produced passing through a diamond (001) phase retarder. The magnetic anomalous scattering factors were estimated in the structurerefinement procedure. The observed asymmetry ratios were in agreement with those made for the most appropriate spin-orientation.

[1] Namikawa K., Ando M., Nakajima, T., Kawata H., J. Phys. Soc. Jpn., 1985, 54, 4099.

Keywords: magnetic structure determination, resonant scattering, ferrites