Cation Distribution in Eu^{2+} - and/or Eu^{3+} -Containing Inorganic Compounds

Seiko Hara,^a Masato Kakihana,^b Maki Okube,^a Koichi Ohkubo,^a Satoshi Sasaki^a, ^aMaterials and Structure Lab., Tokyo Institute of Technology. ^bInst. of Multidisciplinary Res. Adv. Materials, Tohoku University, Japan. E-mail: hara@lipro.msl.titech.ac.jp

Divalent $\operatorname{Eu}^{2+}(4f^{7}5s^{2}5p^{6}\underline{6s^{2}})$ or trivalent $\operatorname{Eu}^{3+}(4f^{6}5s^{2}5p^{6}\underline{5d^{1}6s^{2}})$ ions exhibit extremely interesting electrical and optical properties in various inorganic compounds. The coordination of such ions in the crystal structure, for example, would be in control of the photoluminescence of materials used for cathode-ray tube, plasma display panels and imaging plate.

The site occupation of Eu ions has been mainly examined in this study. X-ray diffraction and absorption techniques were applied to such typical compounds as YNbO₄, Y_2O_2S , BaMgAl₁₀O₁₇ and Eu₃S₄, which contain Eu²⁺ and/or Eu³⁺. Fine powder crystals of $(Y,Eu^{3+})NbO_4$ were successfully synthesized by the polymerizable complex method and used for structural analyses with the Rietveld method. Single crystals of Eu₃S₄ were synthesized from the powder sample with 0.06 g NH₄I flux by the vapor growth. The crystal structure of a mixed-valence compound, Eu₃S₄ has been examined by the valence-difference contrast method of anomalous scattering at the Eu L_{II} absorption edge. The hopping character of 4*f* electrons between adjacent Eu sites is partially frozen between Eu²⁺ and Eu³⁺ ions below T = 210 K. A charge-ordered tetragonal structure was determined below $T_c = 188.5$ K, where a half of Eu³⁺ ions mix with all Eu²⁺ in the 8*d* sites.

Keywords: cation distribution, structural inorganic chemistry, mixed-valence compounds