Relaxor Ferroelectric Behaviour of $Ba_{1-x}A_x(Ti_{0.7}Zr_{0.3})O_3$ Compositions (A=Ca,Sr)

Kamel Taïbi^a, A. Kerfah^a, A. Guehria-Laidoudi^a, A. Simon^b, J. Ravez^b, ^aLaboratoire de Cristallographie Thermodynamique, Faculté de Chimie, U.S.T.H.B.,B.P 32 B.E.Z Alger, Algerie. ^bI.C.M.C.B-C.N.R.S.,Université de Bordeaux I, 87 avenue du Dr A. Schweitzer, 33608 Pessac, France. E-mail: taibikameldz@yahoo.fr

The relaxor ferroelectric materials exhibit a large range of interesting properties related to their complex order/disorder nanostructures. The relaxor behaviour is well known in lead based compositions. Nevertheless, the latter present a disadvantage due to the toxicity of polluting substances. The actual evolution of research is directed to replace the lead by lead-free compositions [1, 2]. The aim of the present work was to prepare and to characterize some ceramics derived from BaTiO₃ by cationic substitution in the 12-C.N crystallographic site.

The various compositions were obtained by solid state synthesis. Room temperature X-ray diffraction analysis allowed us to determine the limits of solid solution. Dielectric measurements exhibit a relaxor behaviour in the range 0 < x < 0.20. Whatever A, Tm decreases as x increases. However, the decrease was comparatively lower in the case of the calcium substitution. This result is related to the size of each cation. For the Ba-Sr substitution the decrease of Tm results from reduction of the c/a ratio. On the contrary, for the Ba-Ca substitution, Ca^{2+} induces a local polar moment leading to a small decrease of Tm. Concerning the strontium substitution, one of the noteworthy characteristic is the very high value in the maximum of ϵ 'r.

[1] Ravez J., Simon A., *J. Korean Phys. Soc.*, 1998, **32**, 955. [2] Nagata H., Takeneda T., *Spn. S. Appl. Phys.*, 1998, **37**, 5311

Keywords: ferroelectric relaxor, lead-free, disordered materials