Unusual Ion Coordination in Membrane Channels and CH Hydrogen Bonds in Enzyme Catalysis

<u>William L. Duax</u>^a, Vladimir Pletnev^b, Marek Glowka^c, Robert Huether^a, ^aHauptman-Woodward Medical Research Institute, Buffalo, NY. ^bInstitute of Bioorganic Chemistry RAS, Moscow, Russia. ^cInstitute of General and Ecological Chemistry University of Technology, Lodz, Poland. E-mail: duax@hwi.buffalo.edu

Non covalent interaction play a critical role in ion transport by the membrane channel forming antibiotic gramicidin A and in the mechanism of catalysis in short chain oxidoreductase (SCOR) enzymes. Gramicidin A, a pentadecopeptide composed of alternating d and l residues, form a nanotube long enough to extend across a lipid bilayer and large enough to allow an unsolvated monovalent cation to move through the membrane. The inner surface of the nanotube is lined by π orbitals associated with peptide bonds and conjugated carbonyl groups. Ion coordination with these π orbitals are the driving force in ion transport. A pattern of strong C-H..O=C hydrogen bonds between carbon atoms on the nicotinamide ring of the NAD cofctor and the backbone carbonyl is of a Pro-Gly sequence in SCOR enzymes indicates that these interactions facilitate hydride transfer in the enzymes. Funded in part by NIH grant No. DK26546.

Keywords: cation-II interaction, C-H hydrogen bonds, natural nanotube