High-Temperature X-ray Study of Zn-substituted Cu₂V₂O₇

Sophia A. Petrova^a, Maria V. Rotermel^b, Robert G. Zakharova^a, Tatiyana I. Krasnenko^b, ^aInstitute of Metallurgy UD RAS. ^bInstitute of Solid-State Chemistry UD RAS, Ekaterinburg, Russia. E-mail: danaus@mail.ru

A room temperature X-ray study has been performed on the Zn-substituted $\beta\text{-}Cu_2V_2O_7$ [1, 2], however no study of the $Cu_2V_2O_7$ - $Zn_2V_2O_7$ solid solutions has been yet done under high temperature in situ . Such studies are important as there are two known polymorphs of $Zn_2V_2O_7$ and three polymorphs of $Cu_2V_2O_7$, both high-temperature modifications ($\beta\text{'}\text{-}Zn_2V_2O_7$ [3] and $\beta\text{'}\text{-}Cu_2V_2O_7$ [4]) are not retained on quenching at a practicable rate.

High-temperature X-ray analysis of the $Cu_{2-x}Zn_xV_2O_7$ solid solutions (0 \leq x \leq 0.7) was carried out in the temperature range of 25°-770°C *in situ*. With substitution of Cu by Zn temperatures of the α - β ' and β - β ' phase transitions decreased, and both phase transitions changed their features and character in comparison with pure $Cu_2V_2O_7$.

As the main difference between the β '-Cu₂V₂O₇ and β -Cu₂V₂O₇ structures involves the V-O-V angle in the $[V_2O_7]^4$ groups decreasing sharply upon quenching, a concentration dependence of structural parameters for both Zn-substituted structures was established and probable cause for the β ' $\leftrightarrow \beta$ phase transition was given.

[1] Nord A.G., Stefanidis T., *Mat. Res. Bull.*, 1985, **20**, 845. [2] Schindler M., Hawthorne F.C., *J. Solid State Chem.*, 1999, **146**, 271. [3] Krasnenko T.I., Zubkov V.G., Tyutyunnik A.P., Zolotukhina L.V., Vasyutinskaya E.F., *Crystallography Reports*, 2003, **48**, 35. [4] Petrova S.A., Zakharov R.G., Rotermel M.V., Krasnenko T.I., Vatolin N.A., *Doklady Chemistry*, 2005, **400**, 30.

Keywords: vanadates, structural transitions, temperature