Structure Investigation of Pure and Cr Doped Li₃VO₄

Doretta Capsoni^a, V. Massarotti^a, M. Bini^a, P. Mustarelli^a, C.B. Azzoni^b, P. Galinetto^b, M.C. Mozzati^b, G. Chiodelli^c, ^aDepartment of *Physical Chemistry "M. Rolla", University of Pavia.* ^bCNISM - Department of Physics "A. Volta", University of Pavia, Italy, ^cCNR-IENI, Pavia. E-mail: capsoni@unipv.it

Li₃VO₄ finds applications in the fields of optics, electrochemistry (ionic conduction) and electronics. The RT BII form is orthorhombic (S.G. Pmn2₁) with LiO₄ tetrahedra larger and more distorted than VO₄ ones; empty sites exist allowing the Li⁺ cation migration. Other polymorphs were revealed by increasing temperature up to the melting point. Our study deals with the effect of chromium doping (up to 10% of the V-cationic fraction) on the structure of Li₃VO₄. The structural investigation was carried out by means of XRD, µ-Raman, EPR and ⁷Li and ⁵¹V MAS-NMR. To study the thermal stability of the solid solutions also HT XRD measurements were performed. XRD and µ-Raman analyses point out that Cr ions can easily substitute on the cationic sites of Li₃VO₄ without evidence of impurity phases. The host crystal structure does not depend on Cr-doping, neither at RT nor at HT. The EPR spectra put into evidence the presence of Cr^{3+} and Cr^{5+} . The combined analysis of EPR and ⁷Li and ⁵¹V MAS-NMR signals allows us to detect that Cr^{5+} and Cr^{3+} substitute on V^{5+} and Li^+ site respectively. The Cr^{3+} presence on Li site is also compatible with Rietveld refinements and Raman results: such substitution requires vacancies formation on Li sublattice, so increasing the ionic conductivity of the material as demonstrated also by our impedance spectroscopy and thermoelectric power measurements.

Keywords: ionic materials, vanadium compounds, occupancy