Direct Observation of Hydrogen Molecules adsorbed in a Coordination Polymer

<u>Yoshiki Kubota</u>^a, Masaki Takata^b, Ryotaro Matsuda^c, Ryo Kitaura^d, Susumu Kitagawa^c, Tatsuo C. Kobayashi^e, Kenichi Kato^b, Makoto Sakata^f, ^aDept. of Physics, Osaka Prefecture Univ., Osaka. ^bJASRI/SPring-8 & CREST(JST). ^cKyoto Univ. ^dToyota Central R&D Labo.,Inc.. ^eOkayama Univ. ^fNagoya Univ., Japan. E-mail: kubotay@center.osaka-wu.ac.jp

Hydrogen is a very important material for the development of a clean energy system. The use of physisorption in microporous coordination polymers is one of the most promising candidates for the hydrogen gas storage. The fundamental structural information of adsorbed H₂ molecules is indispensable for the rational synthetic strategy of these materials. Although the weakest X-ray scattering amplitude of hydrogen has made it difficult to determine the structure of H₂ molecules, we have succeeded in direct observation of H₂ molecules adsorbed in the nanochannels of the coordination polymer by the *in-situ* synchrotron powder diffraction experiment of gas adsorption and the MEM/Rietveld charge density analysis [1].

The H_2 molecules were found to be adsorbed without any chemical bonding to the host framework, in the condition that they can be easily adsorbed and released. The position of H_2 molecule was displaced from the center of the nanochannel. It was located near the metal-oxygen unit near one corner of the rectangular nanochannel. The size of the H_2 molecule is suited to the size of the pocket of the cavity. The structural information of H_2 molecule at the beginning stage of gas adsorption was obtained. That gives us the guideline for the design of high performance hydrogen gas storage materials.

[1] Y. Kubota, et al., Angew. Chem. Int. Ed., 2005, 44, 290-293.

Keywords: gas storage materials, microporous coordination polymer, synchrotron powder diffraction